光的本質(zhì),是物理學(xué)中最深邃的命題之一。其波粒二象性,早已成為學(xué)界共識(shí),然而在光譜學(xué)這一具體的技術(shù)領(lǐng)域,主流實(shí)踐在很長時(shí)間內(nèi)主要依托光的波動(dòng)性原理。回顧光譜技術(shù)三百年的發(fā)展,其核心是圍繞如何更有效地利用光的波動(dòng)性——從棱鏡折射到光柵衍射,再到干涉儀中對(duì)相位與路徑差的精密控制。
這一路徑,可稱之為“波動(dòng)性光譜儀設(shè)計(jì)”。它成就卓著,但也將光譜儀的設(shè)計(jì)引入了固有的工程困境:分辨率與系統(tǒng)尺寸之間存在內(nèi)在耦合。提升分辨率通常需要更高的色散率、更長的光程或更精密的機(jī)械結(jié)構(gòu),這使得系統(tǒng)在體積、重量和成本上難以突破。
近期,發(fā)表于《Nano Research》的一項(xiàng)研究,從波粒二象性的根本屬性出發(fā)為光譜技術(shù)提供了新的分析框架。該工作并非旨在對(duì)現(xiàn)有范式進(jìn)行邊際改進(jìn),而是引導(dǎo)我們回歸光的本源屬性——波粒二象性,從光子與物質(zhì)相互作用的機(jī)制出發(fā),系統(tǒng)性地構(gòu)建了一種全新的光譜儀設(shè)計(jì)理論框架,即“粒子性光譜儀”范式。這一框架的提出,意味著光譜儀設(shè)計(jì)邏輯在物理層面出現(xiàn)了新的可能性。
在波動(dòng)性光譜儀中,通過空間設(shè)計(jì)來調(diào)整光的電磁相位與傳播路徑來實(shí)現(xiàn)分光。其物理內(nèi)核決定了,若要提升光譜分辨率,則必須增大色散元件的色散率或延長光程,這直接導(dǎo)致了傳統(tǒng)高分辨率光譜儀在體積、重量與成本上的居高不下。這也是傳統(tǒng)臺(tái)式級(jí)光譜儀難以被有效微型化的關(guān)鍵原因。
粒子性范式的提出,是對(duì)上述根本性挑戰(zhàn)的回應(yīng)。該范式的核心在于,將光譜測量的核心過程轉(zhuǎn)向光子與材料的相互作用。具體而言,光照到材料表面時(shí),入射光子I與材料發(fā)生相互作用T。在此過程中,材料對(duì)不同頻率的光產(chǎn)生差異化的吸收、發(fā)射或散射行為。通過構(gòu)建多材料組合陣列,可形成一個(gè)高維的響應(yīng)矩陣,對(duì)入射光譜進(jìn)行“編碼”。探測器采集整體響應(yīng),經(jīng)由系統(tǒng)映射D并通過算法P進(jìn)行重建后,可重建輸入光譜。整個(gè)光譜測試過程可表述為:
I'=P(D(T(I))).
與傳統(tǒng)依賴色散與干涉原理的物理分光方式相比,粒子性光譜儀不再需要依賴長光路或高色散結(jié)構(gòu),而是基于材料的本征響應(yīng)實(shí)現(xiàn)頻率選擇性,隨后借助計(jì)算方法完成解譜。這一機(jī)制在理論上有助于弱化分辨率與器件尺寸之間的必然關(guān)聯(lián),為光譜儀的微型化和集成化提供了可能性,同時(shí)對(duì)光路準(zhǔn)直與機(jī)械穩(wěn)定性的依賴也相應(yīng)降低。
當(dāng)然,必須以審慎的態(tài)度看待任何處于發(fā)展早期的技術(shù)路徑。粒子性范式的成熟與廣泛應(yīng)用,仍有賴于一系列關(guān)鍵工程技術(shù)問題的解決,主要取決于材料在實(shí)際制備條件下的均勻性與穩(wěn)定性、響應(yīng)函數(shù)的定量可控性,以及重建算法在噪聲環(huán)境下的魯棒性等因素。上述問題仍需要材料科學(xué)、器件設(shè)計(jì)與計(jì)算方法的協(xié)同推進(jìn)。
對(duì)于一些前沿科技企業(yè)而言,此項(xiàng)研究的意義在于為其技術(shù)路線提供了不可或缺的理論基石。它從光的基本物理屬性出發(fā),提出了一個(gè)可用于討論光譜儀微型化和集成化的理論框架。其意義不局限于某一具體材料或器件結(jié)構(gòu),而在于為未來光譜技術(shù)的發(fā)展提供了一種新的分析路徑。
縱觀科技發(fā)展史,范式的更迭往往始于對(duì)基本概念的重新審視。粒子性光譜儀的興起提醒我們,在面對(duì)工程技術(shù)瓶頸時(shí),回歸物理本源進(jìn)行思考,或許能發(fā)現(xiàn)那片“柳暗花明”的新天地。這項(xiàng)工作的價(jià)值,正在于為整個(gè)領(lǐng)域開啟了這樣一扇充滿可能性的新窗口。















